
USER

PUBLISHING!
This new look newsletter is set
up with the Desktop Publishing
program "TIMEWORKS 2", on
the Mega 1 ST with 4 meg
memory. Files are converted and
transferred to the ST with the
Black Box transfer utility, as
ASCIl files. Those files are then
imported into the DTP and
printed with the Star/LC24-100 at
360dpi, with excellent result.

NEEDS YOU

TWAUG subscriptions
Home 1 Copy £2.50
- DO - 6 Copies.. !?l 2.50

Europe 1 Copy £2.50

- DO - 6 Copies.. E1 3-50

Overseas.. 1 Copy £3.50
-- DO --...S. 6 Copies.. f 16.00

Issue 23 is due mid-September

I ISSUE CONTENT I
REMINDER & NEWS 2
CONTRIBUTIONS & CONTENT 3

DON'T LET BASIC BUG YOU
Tutorial in Basic by Mike Bibby 4

l3OXE UPGRADE TO 576K
by Swtt Peterson 12

B - TAPE - conclusion
Upgrading Data-wrder
by Jiri Bernasek 17

ADVERTISING
NEW PORTFOLIO CLUB 17

FOR SALE SECTION 26

GAMES REVEWS
by Kevin Cooke 27

MAIL BAG SECTION 30

DISK CONTENT 33

USER GROUPS ADVERTS ,
for LACE & OHAUG 34

ADVERTISEMENT .
for CHAOS! COMPUTER 35
ADVERTISING
MICRO DISCOUNT 36

DON'T LET BASIC BUG YOU

TRAIGHT to work
in this Issue.
Have a look at

Program I. I don't think it
should cause you too
many problems.

We're just assigning the
values l, 2, 3 to three
numeric variables,
NUMBERONE,
NUMBERTWO,
NUMBERTHREE, and

immediately after each assignment.

Programming

made easy

- Part V of

MIKE BIBBY'S

guide through

the micro jungle

flsh, but, belleve It
or not, its output Is
exactly the same
as in Program I.

It's sensible
enough down to
line 40. We dear
the screen in line
20, assign the
value 1 to numeric
variable NUMBER
in line 30, then

printlng out the value of the varlable PRINT NUMBER in line 40.

10 REM PROGRAM I
20 PRINT CHR$(125)
30 NUMBERONE-1
40 PRINT NUMBERONE
50 NUMBERTWO-2
60 PRlNT NUMBERTWO
TO NUMBERTHREE=S
80 PRlNT NUMBERTHREE

Program I

Line 50
looks When e uals ded-
dedly

doesn't ake OM.
though:

How can a number be equal to itself
plus one? That's what line 50
seems to be saying, after all.

The fact is that equals sign doesn't
The &d result is that: mean equals here - it

1 S just tells the computer
2 to do something. The

equals sign instructs the
3 computer to do whatever

appears on our screen. A task Is glven on its rlght and then
long-winded way of doing things, I label the result of that task with the
admit, but easy enough to follow. label on its left.

1 Program II is a different kettle of

DON'T LET BASIC BUG YOU continued

10 REM PROGRAM II
20 PRINT CHR$(l2S)
30 NUMBER4
40 PRINT NUMBER
50 NUMBER=NUMBER+l
60 PRINT NUMBER
70 NUMBER=NUMBER+l
80 PRINT NUMBER

In thls case the mlcro Interprets llne
50 as starting on the riiht of the
equals sign, take the value labelled
by NUMBER and add one to it.
Then label the answer with the
variable NUMBER. The micro
doesn't bother that the same label
has been used on both sides, it just
updates NUMBER with its new
value.

The practical effect of line 50 is to
Increase NUMBER by one -to two.
Line 60 then duly prints out this new
value of NUMBER.

Line 70 is identical to line 50.
Starting at the right of the equals
sign it takes the value of NUMBER,
increases it by one, then re-labels it
with NUMBER. That is, NUMBER
increases from two to three. Line 80
then prints out the new value of
NUMBER.

The thing to remember is that the
equals sign doesn't mean equals - it
means assign. You "do" what's on
the right of the equals sign, and
then assign the result to the label
on the left.

Let's take this idea a little further.
Have a look at Program Ill. The flrst
five lines should be fairly familiar.

When we run it the screen dears,
line 20, we set NUMBER equal to
zero, line 30, increase it by one, line
40, and then print it, line 50. Since
NUMBER was zero, and we've
Increased it by one, the result will
be that 1 appears on the screen.

Once the program's done this, we
come to line 60 whlch reads:

60 GOT0 40

As you'll recall, the GOT0 40 tells
the micro to make line 40 the next
line it does. This increases
NUMBER by one, as we've seen, so
NUMBER takes the value two. Une
50 then prints out the 2 and we
encounter line 60 again.

This sends us back to line 40, which
increases NUMBER. Line 50 prints
out the new figure, 3, then we're
back at llne 60, which takes us to
llne 40, whlch increases NUMBER,
and so on.

TTRTAUG NEWSLEmE
DON'T LET BASIC BUG YOU continued

I think you can see that the program
will produce the steadlly lncreaslng
t

10 REM PROGRAM Ill
20 PRlNT CHR$(l25)
30 NUMB€ R-0
40 NUMBER-NUMBER+1
50 PRlNT NUMBER
60 GOT0 40

Program Ill

sequence of numbers 1, 2, 3,4,5,
6,7 and so on.

Try runnlng tt and see. You'fl
probably be glad to know that the
way to break out of the program is
by aptly named Break key.

If you simply want to freeze things
for a moment while you examine the
output, press the Control and the 1
(one) key at the same time - we
write this as "press Control+l ". To
restart things simply press
Control+l again.

As we've mentioned, when a
program keeps going round in
circles like this, we call it a loop. We
can then make statements such as
NUMBER increases by one each
time round the loop.

if you press Break, or freeze it
qulddy enough after the start of the
program, you'll see that the first

value of NUMBER prlnted out is
one, and not zero as you might
think. All rlght, we assigned zero to
NUMBER in line 30, but we
increased it by one immediately,
before ever printlng it out.

But what If we wanted the zero
printlng out? Well, a sneaky metho
would be to make line 30 of
Program ill:

30 NUMBER-1

What happens here is that line 40
lmmedlately increases NUMBER b!
one, to make it zero (- 1 + l -0). tine
50 then prints it out.

10 REM PROGRAM IV
20 PRlNT CHR$(l25) 1 30 NUMBER-0
40 PRlNT NUMBER
50 NUMBER=NUMBER+l
60 GOT0 40

l

Program IV

Another way round is just to swap
llnes 40 and 50, so we PRlNT
before we increase NUMBER. This
is what I've done in Program IV. Tq
running it and you'll see - if you're
quick enough - that 0 does appear
on your screen.

Actually we don't need to go up in
steps of one. Have a look at line 50

TWAUG N E W B L E m E
DON'T LET BASIC BUG YOU continued

of Program V:

10 REM PROGRAM V
I 20 PRINT CHR$(125)

30 NUMBER-0
40 PRlNT NUMBER
50 NUMBER=NUMBER+3
60 GOT0 40

Program V

Remembering that micros start on
the right of the equals sign, the Atari
takes the value labelled by
NUMBER, adds three to it, and
gives the result the label NUMBER.
The effed Is that llne 50 increases
the value NUMBER by three each
time round the loop, so numbers
are printed out in steps of three.

Nor do the numbers always have to
be gettlng larger. program VI, as

10 REM PROGRAM VI
20 PRlNT CHR$(l25)
30 NUMBER-1 000
40 PRlNT NUMBER
50 NUMBERmNUMBER-1
60 GOT0 40

1

Program VI

you'll see without too much
dlfflcutty, starts at 1000, then prints

out 999,998,997 and so on. The
crux here is line 50:

Try running it if you won't take my
word for RI

In fad we can wrtte a general
program that will start at any
number and go up or down in
whatever steps we want by using
the INPUT statement we met in last
issue. Program VII does the trick.

First of all the program asks us the
number we want to start printing
from - which we label START.
Notice how llne 30 poliiefy prints out
a message to tell us what we're
supposed to INPUT. Une 40 does

10 REM PROGRAM VII
20 PRlNT CHR$(125)
30 PRINT 'Number to start C;
40 INPUT START
50 PRINT 'Increment of";
60 INPUT INCREMENT
70 NUMBER-START
80 PRlNT NUMBER

90 NUMBER=NUMBER+INCREMENT
100 GOT0 80

Program VII

DON'T LET BASIC BUG YOU continued

the actual INPUT, labelllng it as
START.

Lines 50 and 60 then prompt for,
and INPUT the increment, or step,
by which we want the numbers to
go up, labelling It INCREMENT.

We then get down to business. Line
90 assigns the value of START to
NUMBER. We then print this value
of NUMBER in line 80, so we're off
to a good start, if you'll pardon the
pun.

We then have to increase NUMBER
by the value of INCREMENT to get
the next value. Line 1 0 then jumps
back to 80, which then prints the
updated value. Line 90 then
I n c r e w It agaln by INCREMENT
and so on.

If you have difficulty visualising this
try substituting sets of real numbers
for START and INCREMENT and
see what happens as you go round
the loop.

For instance, if you mentdly input
25 for START and 5 for INCRE-
MENT, line 90 would give NUMBER
the value 25, which llne 80 would
then print out. Line 90 would then
add 5 to thls, givlng NUMBER the
value 30 then we'd loop back to 80
via 100. The figure 30 would then
be printed out, line 90 would

increase it by 5 again, and so on.

All well and good, but having to
escape from these loops by
pressing Break isn't very elegant is
it? Ideally the program should stop
of its own accord. In other words,
we should give it a condition to
finish an. the loops we've met so far
haven't had any finishing condition
so they're hown as unconditional
loops.

We need to mate a condhional
loop, and Program Vlll shows us
how we go about it.

20 PRINT C#R$(125)
30 ? '1'11 keep on going until you
enter 999"
40 INPUT NUMBER
50 IF NLMBER=999 THEN STOP
60 GOT0 30

The idea is that we keep on looping
round, printing out the same inane
message, untll we enter 999. That
is, the condition for ending the loop
is that we INPUT 999 - any other
number will cause the loop to be
repeated.

Let's see how we achieve thls: Une
20 dears the screen, then llne 30

DON'T LET BASIC BUG YOU continued

prompts for the INPUT, saying the We haven't met STOP before, but I
program will keep on golng untll999
is entered.

(In case you're wondering what the
? is in llne 30, ifs the Atari's
abbrevlatlon for PRINT. If you want
to substitute ? for PRINT, then go
ahead. I prefer the clarity spelllng tt
out gives you.) 9
Line 40 then INPUTS into the
varlable NUMBER. Une 50 Is the
heart of the matter - this is where
we test for our condition. It reads:

50 IF NUMBER-999 THEN STOP

This uses the IF ... THEN
statement, one we haven't met
before. It reads:
Q IF some condition is TRUE, do

what follows the THEN. IF that
condition isn't TRUE, ignore 1
what's after the THEN and carry on
with the next line.

In thls case of llne 50, thls bolls
down to:
* IF NUMBER does indeed equal 999

THEN S O P . IF NUMBER isn't
999, THEN drop through to the
next line - line 60 in this case.

don't think you'll be too surprised to
learn that It stops the micro dead in
its tracks. It also prints out a
message indicating the line it was
stopped at. In this case it would be
STOPPED AT LINE 50.

Smaller

numbers

at the

sharp

end ...'

If, however,
we entered
a value for
NUMBER
other than
999, our
wndttion
hasn't
been met,
so we carry
on wlth the
next llne of
the program,
line 60,
whi& then

sends us back to our prompt for
INPUT again.

In other words, the IF ... THEN
statement ensures that we keep on
looping until we enter the number
999. We've got ourselves a
condttlonal loop!

Actually there are other ways of

So if when prompted by line 30, stopplng It, su& as presslng Break

we'd INPUT a value of 999 for or entering a word when it's

NUMBER, we would do what's after expecting a number. For the

THEN and STOP. moment we'll assume that you're

DON'T LET BASIC BUG YOU continued

good-mannered enough to avoid
thls. Later on we'll see how to "ldlot
proof" our Input, as It's known.

Try running Program VIII, and enter
999 to stop it. Then enter:

CONT

The program wlll restart - CONT
stands for continue. The same trick
works after you've pressed Break.

The IF ... THEN statement isn't too
hard to use, just remember:
0 The condition you're testlng for

comes directly after the IF.
@ You can put any valid Basic in-

struction after the THEN.
0 The instruction after the THEN is

only carried out if the condition
has been met - that Is, if it's true.

@ If the condition is not true, the
micro ignores what's after the
THEN and continues with the
next line of the program.

Take a look at Program IX now.
This does exactly the same job as
Program Vlll but in a diierent way.
This Ume we test to see if the
number is NOT equal to 999, and, if
thls Is so, we loop back to our
prompt for INPUT. Unes 20 to 40
are identical. The vital bits are lines
50 and 60.

Une 50 reads:

50 IF NUMBER<>999 THEN GOT0 3(

Here our condltlan Is that NUMBER

10 REM PROGRAM IX
20 PRINT CHR$(l25)
30? 'I'll keep on going until you enter
999'
40 INPUT NUMBER
50 IF NUMBER<999 THEN GOT0 30
60 END

Isn't equal to 999. That's what <>
means - not equal to. And if our
condition's true - that is, NUMBER
isn't equal to 999 - we THEN loop
back to line 30.

On the other hand, If the conditlon
In line 30 isn't met - that is
NUMBER is 999 - we simply drop
through to line 60, which reads:

60 END

We met thls before. As its name
suggests, it slmply ends proceed-
ings, this time without any message
unlike STOP.

The not equal to symbol, o, may
be new to you. It's just one of a set
of inequalities, as they're known,
that come in very useful in
combination with IF ... THEN
statements. Table I summarises
them.

DON'T LET BASIC BUG YOU continued

If you're anything like me, you'll get
confused between > and <. The
trick is to remember that, for both
symbols, the larger number goes
opposite the bigger end of the
symbol, whereas the smaller
number goes opposite the sharp, or
smaller end. It may not be the way
Elnstein remembered 8, but it's
good enough for me!

Program X uses what we've learned
about IF ... THEN statements, as
they're known, to add a finishing
point to Program VII. Unes 10 to 40
are identical. We dear the screen
and INPUT a value for START, the
number we start from.

Unes 50 and 60 then prompt for
and INPUT the number we wish to
end at, FINISH. 70 and 80 then
INPUT INCREMENT, the value of
our step. As in program VII, the
value of START is assigned to
NUMBER, line 90, and then prlnted,
Ilne 100. Next, we Increase the
value of NUMBER by INCREMENT
and store it in NUMBER again at
line 1 10.

Line 120 is the crux:
.20 IF NUMBER>FINISH THEN END

What this says is, if we've
lncremented NUMBER past FINISH
end the program here and now. If

whlch will loop back to 100 and prlnt
the newfy-incremented number.
Notice that if we have exceeded the
limit we don't actualty prlnt that
value of NUMBER since we don't
loop back to the PRINT statement
of line 100.
Experiment with different values and
see if you can undestand what's
happening. This program is quite
fundamental, and we'll be using its
ideas a lot, so it's worth an effort.

10 REM PROGRAM X
20 PRINT CHR$(l25)
30 PRINT 'Number to start at';
40 INPUT START
50 PRINT 'Number to finish at';
60 INPUT FINISH
70 PRINT 'Increment of';
80 INPUT INCREMENT
SO NUMBER=START
100 PRINT NUMBER
l l0 NUMBER=NUMBER+mCREMENT
120 IF NUMBER>FINISH THEN END
100 GOT0 100

Progarn X
For instance, if you start at 25, set
the finish to 35 and prescribe a step
of 5, you'll get:

25
30

not, then contlnue wfth the next Ilne,

WIAW 19% 1

DON'T LET BASIC The 130XE - 576K upgrade
BUG YOU continued

35
on your screen.
However a start of 50 and a finish of
55 with an increment of 3 will resuli
In:

50

53
You won't see a 56, because it
exceeds our limit.
What happens if the start and flnlsh
numbers are the same, or the
Increment Is negative? In fad, will
the program work with negative
numbers? And what would happen
if we choose an increment of zero?
Flnd out1

Well that's all for this Issue. In
next issue we'll be continuing
with loops, but in an entirely
different way.

by Scott Peterson.

Copyright O 1986, reteased to the
public.

ere we go again, this time 1
recommend you have some
electronics experience if

you wish to preform the upgrade.
Some of the work is duplicated from
the 320K upgrade so 320XE owners
wl# not have as much work to do.
One other point, when in the 576K
mode you MUST use some sort of
basic cart. as you lose the internal
basic, this is only in the 576K mode,
in the 130XE mode internal basic
will fundlon normally.

TOOLS NEEDED;

To preform this upgrade you need
the following;

lneaualitv
iD

Meanina
equals

> greater than
< less than
< > not equal to

ExamDle
717 is true, 8-7 is false
7>5 is true, 3>4 Is false
3 4 is true, 7<7 is false
4< >S is true, 4< >4 Is false

>= greater than or equal to 6-5 is true, 6>=9 is false
less than or equal to 7-7 Is true, 7<-6 is false

I

Table I: lnequalltles a Low wattage fine tip soldering iron.
Vacuum &-soldering tool (like
Radio Shack PN#64-2098).

TWAWG NEWSLEmR
THE 130XE - 576K UPGRADE continued

Q Some 30-gauge wire(Radio Shack
PN#278-501).

* #2 phillips head screwdriver.
* Heat-shrink tubing, 118 in. Dia.
Q Also a pair of small needlenose

pliers and a small flat tip screwctri-
ver are handy.

PARTS NEEDED;
I2 Zl 74LS158
I2 22-217 41256(150ns.)

Q 218 74LS138
Q Z19 7432
* RI-R2 33 ohm 114 watt resistor.

I2 S1 Micremini DPDT switch@
Radio Shack PN#275-626)

Remove the 130XE case and metal
RF shield to get down to the mother
board. (320XE users go to step
two).

STEP ONE:

Now de-solder and remove the
eight ram chips U26 thru U33
(MT4264). They are the row closest
to the TV RF module (do NOT use
solder wlck, the circult board of the
130XE has very weak runs and they
will pull loose if not completely
de-soldered). Repiace these with
the 16 pln low profile sockets.

Take a piece of wire approx 12 in.

long and run a jumper from pin 1 of
each socket to the next. When you
are done the wire should be
attached to pin 1 of each of the new
sockets and you should have about
6 inchs left over. Do this on the rear
of the mother board and then snake
the wlre thru the large hole near the
ram chips.

Next, desolder and remove U23
(C014795), and replace it with a 40
pin socket. Bend up pins 15 and 16
and Insert it in the socket you just
Installed.

Take 21 (74LS158) and break off
pins 5,6,7,9,10,11,12,13,14. Bend
up the other pins on It except 8 and
16. Put this "plggy bad(" on top of
U20 (HD14050, or 4050 -located
just to the rlght of C50) and solder
pins 8 and l 6 of 21 to pins 8 and l 6
on U20. Now take a short jumper
from pin 15 on Z1 to pin 8 of Zl .

Take a piece of wlre about 4 In.
long, solder one end to pin 30 on
the chip marked "C014805 on the
mother board, and the other end to
pin 1 on 21.

Next solder a wlre to pin 15 (one of
the two you bent out) of U23 and
conned the other end to pin 2 on
21. Solder a wire to pin 16 on U23
and connect the other end to pin 3
on 21.

THE 130XE - 576K UPGRADE continued

Take R1 (33 ohm) and Wm the
leads to about 114 in. Take the wlre
you connected to pln 1 of the ram
chip sockets and solder it to one
end of RI, solder the other end of
R1 to pin 4 on 21.

STEP TWO:

Slide the mother board back into the
botlem half of the plastic case (do
not use the RF shield, you must be
able to get at the mother board),
and attach the keyboard. It wlll rest
above the mother board without
touchlng it. Test all 41 256 ram chips
by putting one set of 8 in the
sockets and using the handlers (or
DOS'S), and then the next.

After testing all ram chips remove
them all from the sockets, and take
8 of them and cut about hall of pin
15 off of each one. Only the ''fat"
part of pin 15 should be left. After
doing thls you have to "plggy back"
the 8 256K ram chlps wtth the short
pln 15's on top of the other 8 256K
ram chips. Now solder all the pins
together on the stacked ram chips
except for pin 15, it should not be
touching the other pin 15, make
sure you have them going pln 1 to
1, pln 2 to 2, ed. When you get
done you will have 8 sets of Piggy
backed 256K ram chips.

Now take a piece of wlre about 16

in. long and run a jumper from pin
15 to the next one on all the top
256k DRAM'S, leavlng about 1 inch
between each ram chip. Put these
stacked ram chlps into the 8
sockets you installed earlier.

Take 218 (74LSl38) and bend up
ail the pins except 8 and 16, cut the
pins you bent up in hall so only the
fat part is left, and solder pins 8 and
16 to pins 8 and 16 of the other
74LS138 rlght below the U23
(C01 4795).

Take Z19 and bend up all pins
except 7 and 14, once again cut all
the pins you bent up in hall and
solder pins 7 and 14 to pins 7 and
14 of the 74LS08 rlght below U23.

Take the wire you jumpered earlier
to pin 15 of 210 thru 217 (the upper
row of 256K ram chips) and go out
2 in. and cut the wire, now install R2
(33 ohm) between thls wt. Place a
piece of heat shrlnk tubing over R1
and make sure no wlre Is exposed
and heat it with a lighter. Take the
other end of this wire and connect it
to 218 pin 14.

Flnd the 2 33 ohm reslston just to
the right of U28 (one of the ram
chips you socketized). The upper
oneofthe2isR111, desdderthe
right leg of it and bend it up. Take a
piece of wlre and solder tt to the

TEWAUG N B W 8 L E ~ B
THE 130XE - 576K UPGRADE continued

land where you just removed the
leg of R1 11. Connect the other end
to 21 8 pin 4. Trlm back the leg of
R1 11 and solder a wire to it, slip a
piece of heat shrink tube over it and
heat it up.

Now connect the other end to Z1 8
pin 12. Take a short wire and run a
jumper from pins 1 and 16 of 21 8.
Take another short wire and
connect a jumper from pins 3, 5,
and 8 of 21 8. Now connect a wire
from 21 8 pin 2 to 21 9 pin 3.

Find the wire you installed from U23
pin 15 to Z1 (74LS158) pin 2 and
desolder it from U23. Take it and
reconnect it to Z19 pin 11.

Ok, now pry U23 (C014795) back
out of the socket and bend up pin
11, plug it back in. Run a jumper
from pins 1 and 4 of 219, and
another jumper from pins 10 and 13
of 219. Connect a wire from U23
pin 11 to Z19 pin 1, and from U23
pin 15 to 21 9 pin 13. Now connect a
wire from 219 pin 8 to the right side
of the 3.3K ohm resistor marked
R206 (located at the bottom right of
U23). Conned a wire to 219 pin 6
and run it to pin 18 of U3
(C061 61 8).

Now comes the tricky part, drill a
small hole (114 in. or so, depending
on the switch size) at the rear rlght

of your 130XE. Take the small
DPDT swttch (S1) and install tt in
the hole. Now connect it but (make
sure the switch DOESNT have a
center off position);

S1 (rear)
U23 - U23
pln 2%- - - ----pin 1

0 - --- 219
pins 2+12 -- -pins 5+9

Note: where the wires cross in the
middle, they are NOT connected.
Make the connection from the
switch to U23 on the rear of the
mother- board.

Well that's It (thank god).

Now re-assemble the computer,
being carefuil not to break any
wiring going to the switch. You
should now have in one switch
position a 1 00% com patable 1 30XE,
and in the other you have a 576K
130XE that does not have Antic
memory enhance mode and also
can NOT use internal basic. In the
130XE mode you gain 64K as bit 6
of the PIA can still be used. The
foiiowlng page ilst of the bit table
and numbers to be used in iocatlon

THE 130XE - 576K UPGRADE continued

6-0 enable extended memory
, abcde-

nemory control bits.

,

Bank # Control # (dec) Hex

5401 7 (PORTB).

Once again, if you need help call
the Peanut Gallery BBS (408)-
384-3906. If you want a mailer of all
the upgrades I have as well as a
dlsk wlth handlers, source codes,
ect. send a money order (please, no
checks) for $10.00 to:

Scott Peterson

P.0.BOx 33

Ft.0rd CA. 93941-0033

This Includes the 800 288K upgrade
by D.G.Byrd, the 800Xlf256K
(C.Burchholz), the 1 30XE1320k
upgrade and anything else I finish.
Good luck, and have fun.

Memory Control Register
5401 7(D301) 130XE in 576K mode.
B i t 7 6 5 4 3 2 1 0
D a b C c d e R

Bank # Control # (dec) Hex
l.l-.-.-------.-.-_l-l.-ll-----l--l---l-----

Bank2 133 85

Bank3 135 87
Bank 4 137 89

Bank5 139 88
Bank 6 141 80
Bank 7 143 8F
Bank 8 161 A1
Bank 9 163 A3

Bank10 165 A5
Bank11 167 A7
Bank 12 169 A9
Bank13 171 AB

Bank14 173 AD
Bank 15 175 AF
Bank 16 193 C1
Bank 17 195 C3
Bank 18 197 C5

Bank 19 199 C7
Bank20 201 C9
Bank 21 203 CB
Bank 22 205 CD
Bank 23 207 CF

Bank 24 225 E l
Bank 25 227 E3
Bank 26 229 E5
Bank 27 231 E7

' D-0 enabie diag. ROM
R=1 enable OS ROM

THE 130XE - 576K
UPGRADE continued

Bank 28 233 E9
Bank29 235 EB

................... Bank30 237 ED
Bank 31 239 EF

There is a version of MYDOS to
support thls mod, its called 4.1A
and will run up to 32 16K banks. At
thls time ICD Is worklng on a
RD.COM file to support this.

Also I have written a machine load
tester that will load and test all 32
banks of memory to insure that they
are there and work. Wonder how
long It wlll take Jay Torres to copy
this one.

Good luck Scotl Peterson

This Is the last upgrade artlde that
has been supplled to TWAUG.

A tari Portfolio Club
Are you a Portfollo user? If so why
not join the new Portfollo Club,
membership is free. Contact Paul
Finch, 16 Cedars RD, Morden,
Surrey, SM4 5AB
Enclosing SAE for more details and
entry form.

Configuration file

T he next file (after the DOS)
must be a configuration file.
This file must be named

"CONFIG.B, and it is a text-file that
contains the commands for
inttlallzing the system after boot up.
(Uke the "STARTUP.BAT" file on
disk.) This file should be shorter
than 500 bytes - otherwise an "Out
of memory" error may occur with
the Internal Atarl-Basic actlve. You
can create the conflguratlon file
simply by copying It from the "E:"
device - use the command "COPY
E: B:CONFIG.B", and then type the
contents of the file (use <CON-
TROL>+<3> to flnlsh). The
conflguratlon file is interpreted by
the Boot loader. This is necessary
to allow reading of high-speed tape
fibs before installing the "BTAPE"
command, but there are also some
Ilmtts: The configuration file may
contaln only resldent commands,
and the commands "COPY",
"DATE", and "TIME". No com-
mands in the configuration file may
be started from other devices than
the high-speed tape system (but
parameters may work with other
devlces too). The used commands
may not use memory above the

address $9000 (MEMH I), because
the Boot loader itself uses this
memory. It may occur, that a
tape-file must be used as a
parameter of some command
before lnstalllng the "BTAPE"
driver. In this case, you should call
the tape-files as "Q:filenamen - the
request will then be executed by
Internal routines of the Boot loader.
The device handler "Q:" exists only
while the configuratlon flle Is
executed, and it can only read tape
files. When the configuration file is
finished, the "Q:" handler
disappears together with the Boot
loader. The wildcards are supported
by "Q:", but you can't use it with the
"COPY" command (in this case,
COPY will try to get the actual
filename using the "DIR" function -
not supported by "Q:"). When the
last line of configuration file begins
with a "+" character, the rest of the
line will be executed in the CP. In
this way, you can automatically start
any program after boot, or run a
batch file (previously copied to a
Ramdlsk) to continue with the
initialization of the system.

After the configuration file, you
should record all the files necessary
for executing the configuration.

(That's for each program-file line
and any files used as parameters.)

Example: To simply boot a DOS
and BTAPE, the configuration file
"CONF1G.B" will look like this:

BTAPE 10
In this case, you should record the
following files to the boot-tape:

The Boot loader (see "TAPE-
BOOT") XBW130.DOS (or other
compatible DOS) C0NFIG.B (see
above) BTAPE.COM

Another example: Boot a DOS,
install RAMDISK (on the Atari
130XE computer) and then BTAPE.
Place the "BTAPE.COM" flle into
the Ramdlsk to allow free
installing/removlng of BTAPE
depending on memory usage of
application programs. The
configuratlon flle will be following:

RAMDISK 1 F Q:B-130XE.RD
COPY Q:BTAPE.COM D1 :
+Dl:BTAPE /B

You should record the following
files:

The Boot loader (see "TAPE-
BOOT') XBW130.DOS (or other
compatible DOS) C0NFIG.B (see

above) RAMDISK.COM
B-1 30XE.RD COPY .COM
BTAPE.COM

LOADING GAMES

Under &TAPE, you can load almost
any games (and other programs like
demos etc.) as long as they are
stored in a binary file. Every
programs started under a DOS or
Micro-DOS are compatible, and also
many tape-versions uses this format
(the games with a short loader,
mostly dlsplaylng a "I" In the
bottom-right corner of the screen -
you should copy only the main file
without of the loader).

The MICRO-B command

Some games may be started under
BW-DOS, but mostly the DOS is too
long to fit into memory together with
the game. With a disk drive, we are
using different "Micro-DOS"
programs in this case - the same
tool for tape is called "MICRO-B"

MICROB (CITIS) (External
command) This command records
the MICRO-B loader to tape. With
the parameter " C it creates a
common boot-file (in the "C:"
format), that may be loaded simply

by holding down the <START> key
during power-on. The 'T'
parameter gives the same loader in
the format "TURBO 2000" - a
format that is popular here in the
Czech Republlc. With the parameter
"S", this command will directly start
the MICRO-B loader.

Using the MICRO-B loader

The MICRO-B loader can only start
a game or another program of the
same type. No more support (like
access to tape-files) is provided.
The loader Is easy to use. After
starting it, any file in the B-TAPE
format is accepted from tape. When
any block is found, the program
displays the filename, and asks you
if you wish to load that file. When
you answer "N", another block will
be searched, otherwise the file will
load.

When started, the MICRO-B loader
executes a few actions to provide
the best compatlbllity with
game-programs. (Most of these
actions are the same as under
"Micro-SpartaDOS".) First, any
DOS will be removed, and the
Atari-Baslc will be switched off (no
need to hold down <OPTION> whlle
booting). Then, MICRO-B dears the

memory, and sets a special mode
for the <RESET> key, so most of
the games will not be "reset-proof"
under MICRO-B (the number of
necessary "OFF-ON" swltchlngs is
greatly decreased).

The MICRO-B loader should load
most of the file-based games. The
only problem may occur with
MEMLO - with MICRO-B verslon 1.0
the MEMLO value is $CAD.

The BINCOPY command
Whlle loadlng games, demos etc., a
problem with length of the gaps
between blocks may occur. Many
programs of the mentioned type
contains different intros or
depacking routlnes (for example the
ones generated by "Super Packer"),
that are executed between loading.
This mostly causes the recorder to
overrun the beginning of the next
block, and so the user must rewind
the tape a bit. Slnce thls is really
borlng, the programs with such
intros or depacking routines should
be copied to tape with the
"BINCOPY" command.

the destination is always "B:" -
that's why only one parameter
(source) is required. The limit of
flle-length whlle copylng dlrectly
from tape to tape is the same as
with "COPY". The command
"BINCOPY" may copy any file, but
the reason why it was written is for
copying binary program files,
espedaily games. In this case, the
"BINCOPY" program checks the
file-structure, and generates a long
gap after every blocks, where a kind
of intro etc. may occur (where an
INIT vector is found). The games
copled in this way are loading with
no problems, never mind that intros
etc. are present, and the loadlng-
time is not increased like with the
mode of long gaps.

TECHNICAL INFO
This chapter gives the necessary
information for using the functions
of BTAPE in application programs. It
was wrltten for programmers - if you
don't understand it you can skip this
chapter.

Functions of the "B:" handler
BINCOPY file (External command).

This program is very similar to
"COPY". It only copies one file, and

0 WlAum 1996

The main part of the &TAPE
system Is handler "B:". This handler
can open only one file at a time. No

physical errors are returned, every
actions like searching for the correct
file, reading retries etc. are
suppotled by the handler itself. You
may only encounter errors 128, 138,
152, 161, 163, 166, or 168.

The "OPEN" function needs a
filename in the same format, as with
a disk drive (but without of path of
course - the syntax Is
"B:name.ext". The posslble values
of "auxl " and "aux2" (the second
and third parameter of "OPEN" in
Basic) are:

Auxl-4 - Readlng a flle. In this
mode, it is possible to change the
position In the file using NOTE and
POINT functions. Auxl-6 - Reading
of the directory. See "DIR" and
"DIRS" commands for more info.
Auxl m8 - Recording a file.
Aux21128 - Short gaps between
blocks. A~x2-64 - Double blocks.

Both these functions of "Aux2" may
be added together of course. These
functions may also be selected by a
parameter whlle lnstalllng the
"BTAPE" command - In this case
the "AuxT parameter have no
effect (it is ORed with the settings
done during installation).

A few more functlons are available

in the same syntax, as with a disk
drive: NOTE (XI0 38), POINT (XI0
37), and binary load (XI0 40). The
functlons NOTE and POINT are
only possible whlle readlng a flle.

The handler "B:" allows also access
to incomplete files (for example
when recording overruns a part of
another file on tape). It's possible to
read any Mock, that Is readable for
the "DIR" function. The access to
incomplete flles Is posslbb by
executing OPEN and then
immediately POINT. in this case,
BTAPE searches directly the
POlNTed position. Vieweing
incomplete files is easiest with the
command "DUMP. You'll need to
search the first readable block with
the "DIR" function, multiply the
serial number of that block by 1008
(the length of a block), and use the
resutt as a file-posltion for DUMP -
type "DUMP B:fllename result". In
the case that the last block of the
file is missing, you need to abort the
reading with the <BREAK> key.

SIO-level access

Using the vector "LSIO in the
"COMTAB" table (see the DOS
manual), you can call directly the
readlwriie routines of BTAPE. it will

not affect any function of the "B:"
handler - you can even do it with a
file open on "B:". On this level, the
thlngs like readlng retries, sound
signals etc. are not supported; only
the reading routlne Is able to wait
for the beginning of a block. The
routines simply return errors like
140 and 143 when a physical error
occurs. The startslstops of the tape
recorder are fully sopported by
BTAPE also on the SIO-level - just
call the LSlO vector, and BTAPE
will do it for you. On the SIO-level,
the whole physical blocks are
transferred - indudlng the internal
header-bytes (see later). Recording
the sound signal "start of flle" Is not
available on the SIO-level. The use
of BTAPE SIO-routines may be
useful for example while creating a
"comfortable" copier-software
(handling two flles with changing
two tapes, verlfylng the tape etc.).
Note that the used buffer may not
be in the area of $4000-$7FFF, or
above $WOO. That's because the
SIO-routines are tlme-crftlcal, and
so It's lmposslble to swttch
memory-banks for each byte (when
BTAPE is installed in a Ramdisk
bank, or under OS-ROM). It's also
possible to install new SIO-routines
into the LSlO vector - such routines

will then be used by the "B:"
handler. But you must know, that in
this case the buffer used by the "B:"
handler may also be in a bank, or
under OS-ROM.

The settlngs before calling LSlO are
as follows:

DDEVlC ($300) $61 (B-TAPE)
DUNlT ($301) - l (unused)
DCOMND ($302) = "R" (read) or
'W" (wag) DSTAT ($303) - 64
(read) or 128 (write) DBUFUH
($304) - Address of buffer DTIMLO
($306) - $FF (unused) DBYTUH
($308) - Length of buffer DAUX1
($30A) = 0 (unused) DAUX2 ($300)
= The value "aux2"

The length of the standard ETAPE
blocks is $401. You can transfer
blocks of any length, but then you
can't access It wlth the "B:" handler
of course. The value "aux2" have
the same function as with OPEN in
Basic (see above), but on the
SIO-level the value is not affected
by the parameter used while
installlng BTAPE. The speed is
deflned while installing BTAPE, and
may not be changed (excepting that
you call the "BTAPE" command
again). The handler "B:" is
recording the first block of each file

1-1-11 B - T
twice, with aux2-0 (to provide a
long gap between the blocks). The
next blocks are doubled (when
necessary) Using the correspondlng
aux2 value.

Physical format

T he following part of this text
describes the physical format
of data on tape. It's only In

case someone is interested - the
described format is supported by
SIO-routines of BTAPE, that are
also accessible for other programs
(see above). The signal recorded on
tape describes single blts wlth
different lengths of impulses. This
system came from m-DOS, and It
was used because of compatibility
with older Czech Software. The
origin of this system is in the line
U(-Spectrum - TURBO 2000 -
TT-DOS - ETAPE. The used format
S not supported by the ~ t a r i
lardware, so all decoding is
softwarebased. That's why the
screen must be off during the 110
)peretions. Recording to tape uses
JOKEY-timers, so the timing of
xeated signal is perfect (that's
Mferent from older ''Turbo"
;ystems like m-DOS). Reading of

this format is possible only with a
tape recorder modified for "Turbo".
This upgrade is activated by storing
$34 at $0302 and $0303. Then, the
input data-line reads directly the
slgnal from tape. Each bit is
recorded as one impulse followed
by a pause of the same length.
While reading, the length of impulse
and pause together Is slgnAcant.
The exact length of these Impulses
depends on the used transmission
speed. The impulses for a bit with
value "1 " are exactly two times
longer, than the impulses for a "0"
bit. A Mock begins with a lot of "1"
bits. Thls signal Is used for
synchronization of the readlng
routine, and also to recognize the
used transmission-speed, The
length of this signal (0.5-1.5 sec -
dependlng on the used mode) also
helps with the compensation of
different tlmes used for interpre-
tation of data between blocks. A
single "0" bit is following. This bit
indicates the begin of actual data.
Then the data-bytes are stored,
highest bit flrst. At the end, one
internal check-byte Is stored - this
byte never appears in the data
buffer. The value of this byte is a
combination of all data-bytes using
the function Exduslve-OR (EOR In

assembler). The signal of a block is
finished with a single bit more - the
value of this bit isn't defined. This bi
Is necessary for a safe interpre-
tatlon of the last recorded byte - this
blt doses the pause after last
significant impulse. The polarity is
not defined - the bits may be stored
as "high-low" or "low-high" (so
copylng the tape uslng dmerent
audlo-devlces makes no problem at
this point). When the recordlng of a
block begins immediately after
turning the recorder on, a short
pause is added before the start of
the signal. This avoids affeding the
synchronlzatlon-slgnal by "waking
up" the recorder, or by an old signal
(because of the delay between the
clearing and recording heads).
Affected signal leads to errors in
recognized transmlsslon-speed, and
so decreases safety of the transfer.
The melody-signal "start of flle" is
just a sound-effed for better
orientation, it has no sense for the
reading routine.

Logical format
Each block under &TAPE is l025
($401) bytes long, and it contains
1008 ($3FO) bytes of data, and 17
($1 1) header bytes. The info about

while working on SIO-level. The
bytes in a block are:

0 - Serial number of the block in file.
This number may be between 1 and
255, the block 0 is not used.

1 - Recording mode. This is a copy
of "aux2" value used while
recording the file - induding the
ORed settings deflned while
installing BTAPE. This byte is used
by the "DIR" fundon to recognize
and show files with double-blocks.

2,3- Position of the last significant
byte in the block (only the lower 11
bits). Every block accepting the last
one has $400 here (Incomplete
blocks in the middle of a file are not
allowed - because of the NOTE and
POINT functions). When the length
of file is not equal to zero, empty
blocks (value 16) are never present.
The last blodc of a file has the
highest bit (bit 7 in the byte 3) set to
"1 ". The unused bits should always
be zero.

4 - Unused byte (reserved). Under
B-TAPE it's always zero, and it
should also be with any other
programs (working at SIO-level for
example). When using the old
TT-DOS, you may encounter almost

the structure of a block is necessary any value here. The value Is always

4 July/A~gt~t 1996

the same for every block in a file.

5 - The random number. This
number is created (randomly)
during the OPEN operation, and is
always the same for every block in
the flle. It is used to recognize and
reject blocks from other files even if
the filenames are identical. The old
TT-DOS doesn't create the random
numbers.

6-16- The fllename (8 characters for
the name and 3 characters for the
extension).

17-1 024- Data bytes. The unused
bytes in the last block of a file are
always zero under &TAPE, but
while worldng with the old TT-DOS,
these bytes are not defined.

In this chapter you'll find some info
about compatibility between
B-TAPE and selected programs.
The most common problem with
compatlblllty will probably be a
collision in memory - see also the
chapter "Installation" for more info.

SpartaDOS

3.2f (other versions weren't tested).
While installing BTAPE under
OS-ROM with SpartaDOS, you
must use the parameter "/OX" (the
function AlNlT will not be avallable
and the errors in CP wlll be shown
as numbers only). The internal
command "COPY" in SpartaDOS is
not fully compatible with B-TAPE. It
can't cany orlglnal filenames whlle
copying from tape (you must type
both source and destination
filenames), and it cannot copy
directly from tape to tape. When
necessary, you can use the external
"COPY" from BW-DOS by typing
"COPY.COM" Instead of "COPY".
But please don't use the "COPY"
from BW-DOS for disk-to-disk,
copying under Sparta - this leads to
incorrect datehime information on
the copied flles.

Turbo Basic
To get the popular Turbo Basic
working wlth B-TAPE, you must
Install the "BTAPE" command into a
Ramdisk bank (use the parameter
"/B). This works only with min.
128kB RAM of course.* On a 64kB
system, the Turbo Basic may not
work with B-TAPE installed at the
same time. The only solution in this

&TAPE is compatible with
SpartaDOS versions 3.2d, 3.20 and

case is the called ' iurbo Basic
n r

3.2q" (a version for SpartaDOS),
with SpartaDOS 3.2 and "BTAPE
IOX".

TT-DOS
TT-DOS is an older Czech program,
that contains a DOS 2.5 done FMS,
and a very flrst version of the "B:"
handler. The format of tape-files is
compatible with B-TAPE. Since
TT-DOS is a DOS 2.5 alike system,
no filenames - including the ones on
tape - may contain the character
"-", and also numbers are not
allowed at the flrst posltlon. TT-DOS
doesn't support the random
numbers, so every tape-files under
TT-DOS should have different
names. The functions of "B:"
handler found in TT-DOS are also
supported by ETAPE. ETAPE
does support some new functions
(NOTE, POINT, Binary load, and
the access at SIO-level), that are
not available under TT-DOS. A
small dmerence Is also in the format
of directory-listlng. TT-DOS uses
the character "W for files with
double-blocks (ETAPE uses '""),
and the "FREE SECTORS" counter
is DOS 2.5 alike, so It shows
"999+FREE SECTORS".

FOR SALE
Black Box with Floppy Board
enhancement, Hard Drive
40MB formatted and parti-
tioned. 3 PBI Drives: 1: 3%
1.4MB 1:5% 360K, 1:5l/4
1.2MB. Citizen 120D+ with 14
spare re-inked Ribbons. Modem
WS4000 Miracle Technology.
All cables to connect to Black
Box to run parallel, plus all
manuals and power units. If
wanted will also sell a lMeg
65XE, setup for Black Box.
Sell as one item, price B O O ,
without computer £350. Buyer
must collect or pay Postage. I
include utilities and a spare 3%
720K drive.

All these items are surplus to
requirement, I still have an
800XL with 256K memory and
disk drives.

Black Box when purchased cost
2319 + £72 VAT, custom
charges and import duty.

Contact Max: on

0191 - 586 6795

BY KEVlN COOKE

K, here we go with some 0. ore reviews. And I'm late
sending them to the guys at

TWAUG agaln! Ooops! Lucklly, I've
now finished my first-year exams so
all I have to do is worry continuously
until the results arrive!!! Oh well,
enough chit-chat, let's take a look at
some more games.

Title: INSIDE
Sold by: Micro Discount,
265 Chester Road,
Streetly,
West Midlands B74 3EA,
ENGLAND.
Tel: 0121- 353 5730

Price: 5 Pounds 95p (+ P&P)

It's rare that a unique piece of
serlous computer software it
released. However, it's even rarer
that a truely unique computer game
is released. Inside changes that!

your task is to go inside of the
computer (literally!) and repair the
broken IC's.

Luckily, you are supplied with the
latest in computer infiltration craft -
a high-tech spacecraft capable of
manouvering at high speeds.

The first thing to appear when the
game is loaded is the title screen.
Here a digitised voice says "Tech
Tech Technology, Technology"
before a fairly pleasant tune begins.
The title screen almost looks like a
demo with the word "inside" looping
around a large computer chip.
Pressing FIRE, as usual, starts the
main game.

The game screen is divided into two
playfields, each of which contains a
spaceship, allowing you to play a
simultaneous two player game. At
the bottom of each screen are
numerous parts of the computer -
touching these will make you lose
energy. However, amongst these
parts are bits which may need to be
repaired - you'll know which bits
need repairing from the messages
whlch will appear on screen but It's
your task to find out where these
parts actually are! The screen
scrolls so that there are actually

The story goes that your Atari has
been over-run by a computer virus
of catastrophic proportions - it can
literally replace components of
various IC's with Incorrect parts,
causing the eventual death of your
beloved machine. As an electrician, about 4 screen-lengths of computer

mm

parts.

When you do find a component
which needs repairing and you land
on it, the screen changes to one
showing a circuit diagram-type
picture with the faulty components
flashing. You must then press fire
and replace these bits with a choice
of around 25 other parts. It's a
difficult concept to explain but it's
actually qulte straightfoward -
honest1

To make matters more complicated
(but realistic), when certain C ' s are
not repaired, the program is
affected in the correct way. For
example, if the POKEY chip is
broken, strange sounds wlll be
heard if the PIA is broken, your
control of your spaceship will
become more difficult, etc.

INSIDE is certainly unusual. This
could be it's failing for people who
are not prepared to experiment with
the game and would prefere a
simple shoot 'em up. However,
perserverance will show that
INSIDE Is unique, graphically and
musically pleaslng and above all,
fun to play. I recommend it!

Title: BATTLE SHIPS

for address)
Price: 4 Pounds (+ P&P)

T his game is a done of the
game which has been
around on the ST an AMlGA

for several years now. But do you
really want to play battleships on
your computer?

The game, after taking quite a while
to load presents you with three
options - a one player game using
one joystick or a two player game
using either one of two joysticks.
After selecting which type of game
to play, the real fun begins.

First of all, you must place your
ships on the large grid - you can
move them around and rotate them
with the aid of your joystick. In a two
player game, each player would
obviously have to leave the room
whilst the other places his ship.
When both players have done this,
each can take it in turn to aim their
shots at several of the grid square.
Each player starts off being able to
fire 20 shots but this number
decreases as more of his ships are
sunk,

After placing your shots, a different
scren appears showing the guns on
a ship shootlng at the water In the

Sold at: Micro Discount (see above

distance. A hit is denoted by a
distant explosion whilst a miss is
denoted by a simple splash of
water. This process is repeated
several tlmes until one player's
ships have all been destroyed. At
thlS point, a message appears
telling the players who's navy won
the battle.

There is nothing particularly exciting
about the game. You'd probably
have as much fun playing it with a
normal magnetic set - the sort
available in most toy shops.
However, if you have no friends
(saddol) or don't want to fuss
around wlth getting those magnetlc
pieces to stick, the game could be
just for you. It's actually well done
but, to be honest, if BATTLESHIPS
has never turned you on before
than this is unlikely to do so either.

Overall, if you like BATTLESHIPS
then thls is ideally priced. If not, stay
clear.

Title: FATUM
Sold at: Micxo Discount (see above
for address)
Price: 4 Pounds (+ PAP)

ATUM is a new shoot 'em up
from ASF of Poland.

The disk, when first loaded, displays
a menu from which you have the
option of displaying a introduction
demo or starting the game.

The demo looks rather nice. A
paralex scrolling landscape appears
at the bottom of the screen in
numerous colours and eventually a
(bulky) spaceship flies into view.
Text (in polish) is then displayed on
the screen. Although this demo
looks nice, it does seem a little
pointless. So what's the game like?

Well, the title screen also looks a
little like a demo. Pressing fire
brings up a message saying "ETAP
1" (level 1) and a music tune
plays ... and plays ... and plays ... and
you can't skip it1 This got the game
off to a bad start in my books.

The actual game is a vertically
scrolling shoot 'em up. Graphically
there are no major problems
(except for the design of your ship
which I don't think looks particularly
exatingl). However, gameplay's
where it count so what is FAT UM
Ilke, I hear you ask. To be perfectly
honest, not too good1

FATUM is a poor imitation of
SIDEWINDER (or should that be
SIDEWINDER H?). Control of the
s h i ~ is verv res~onsive but most of

the time, perhaps too responsive. I
realise that movement needed to be
fast to steer the ship through the
tiny gaps but why were the gaps
made so tiny in the first place?!!
Aliens do attack in some nice
formatlons but even your laser
cannon fails to raise the blood
pressure. Something MUST be
wrong if gratuitous destruction can
do nothing to exdte me1

It is with regret that I do not feel that
1 can recommend this game at all. It
may please die-hard fans of shoot
'em up's but for most other people,
it will probably not excite in the
slightest.

I'm left wlshlng that the maln game
was vertically scrolling and
graphically more like the demo.
Alas, it's not and as such would
probably be a buy that you would
regret. Save your money and buy
someting else instead.

Sorry the column's a bit shorter this
time. Expect it to be back in it's
former glory next issue with even
more revlews. In the meantime,
support your Atarl dealers - they
need you as much as you need
theml

MAIL BAG

May 28, 1996
Dear T.W.A.U.G.
I am mailing you a game called
"SUB AITACK". It is an older game
but I reworked it so that it now
saves your name and high score in
that game and on the disk. It is a
very playable game. We use it when
we hold a contest in the dub. Alex
modified the high score routine in
the game. I think you will like it.
On the back of the disk we have a
very nice "COOKING RECIPE
PROGRAM" which Alex and I also
modified to work better.
Our best regards to you.
Atarily,

Ron Fetzer, Secretary & Treasurer,
OL' HACKERS ATARl USER
GROUP INC.

Reply by Max:
We do appreciate your kindness in
sending us the disk with the
programs, mentioned above, in your
letter.
John thought it a good idea to share
the game and cooking program with
our readers and therefore he put
these two programs onto the B side
of this issue dlsk.

MAIL BAG

June 2,1996

Dear Max and John,

I received your latest newsletter
issue #21, but I'm sorry to inform
you that the dlsk must have been
damaged in transit and would not
load on either side. Would you
please be good enough to send me
a replacement for our PD library.

A suggestion if you don't mind. I
think that your last newsletter
magazine has too many articles that
are very technical in nature, except
of course the article on BASIC and
the games review. I think you
should consider a broader spectrum
to cover those 8 BIT folks who are
sort of above the baslcs, but below
the techies, but interested in
utilities, DTP, etc. This is just my
thoughts, which I wanted to share
with you.

I still think you fellows put out a
great newsletter duo.

Atarily,

Alex Pignato
President
OL' HACKERS ATARI USER
GROUP INC.

Reply by Max:

I am sorry to hear about the
damaged issue disk you've
received, it does happen from time
to time, I have received damaged
disks, mailed locally.

Thank you Alex for your suggestion,
or shall I call it a criticism, I am
really pleased about it, because I
thought everybody was satisfied
with the content of the newsletter.
You see we haven't received any
new anides for quite a while, the
upgrade anides were the only ones
we had received, but I am pleased
to say this issue contains the last of
this kind of material. I also found
these anldes to technical.

It is rather a bit diicult when no
outside help is forthcoming,
especialty with me having had to go
back Into hospital for another
operatlon. Slnce I had thls op, which
was on the 6th of June, I haven't
been able to concentrate properly.
After the op., something's gone
wrong and left me with a painful
chest.

I do hope that we will receive some
new material for the next issue, or
suggestions what the readers would
like to see. I am thinking to include
an article on DLI.

MAIL BAG

5th June 1996

Dear TWAUG,

Congratulations on another super
Newsletter, the new format is much
easier to read. Perhaps, on looking
back at the last few issues, I prefer
the general layout of issue 18 which
did'nt have the border but had the
line separating the two columns.
How about alternating the two
styles.

I was disappointed at missing
SAMS but the first I knew about the
change of venue and the date was
in Page 6 which artived on May
l 1 th, just a month after the event.
There must be many others in the
same position and this, no doubt,
accounts for the poor attendance. I
will endeavour to be at the next
show which I assume will be in
Stafford In the rah in November.

Enclosed Is an order for PD disks
for your kind attention..

Very best wishes,

Leslie Benson

Reply by Max

Thank you for your letter and I am
pleased that the new format is
easier to read. As I mentioned in my
previous reply, I like to hear
suggestions and ideas on how to
improve the newsletter.

I have already started including
centre lines, where a new article
begins. The reason I have put a
border line on each page is for a
guide when I cut the pages to size.
All issues up to 18 were printed in
the A4 size and I didn't have to cut
the pages to the A5 size. This new
format is printed in the A5 size, as
you see it onto A4 size paper and it
needs cutting after it is printed.
Without the border lines I find it a bit
difficult to cut all pages to the right
size, with the border lines on I find it
much easier and quicker to cut. I
will of course, as you suggest,
alternate the issue with different
borders and centre lines.

TWAUG was at the spring show in
Spalding, Lincs., I myself wasn't
there only John. The venue for
SAMS will be in Stafford again on
the 9th November, and I have no
doubt, it will be raining as well.

Side A of this issue disk contains two basic games and three screen dump
programs, a font maker program and a character set data maker, an Atari file
coder and a password autoboot maker. On Side B we've put the programs
we've received from our friends from New York. A game called Subattack
and a Recipe program.

The Screen Dumps are for the Epson compatible printers, a NP-10 and the
Okimate. These programs let you print pictures in mono, colour, in Graphics
8 or Graphics 9. When the program is loaded you have the Option the read
the instructions by jusl pressing the space bar.

The Font Maker program lets you design your own fonts which can be save
to disk, it also lets you v i w a font set which you can load in.

The Character Set Datamaker creates a set of Data Statements from a saved
character set. The Data Statement will be written to disk as a LIST File, the
Data can then be merged with your program using the ENTER command.

Have you ever wanted to protect your special files from prying eyes? Then
Atari File Coder is the program, it uses a form of password protection.
Without the correct password no one can recover the files (not even you).
The same program is used to decode the files, as long as you enter the
correct password. The instructions are on the disk, under the filename -Atari
File Coder, it can be read from the menu.

When you run the Password Autoboot Maker it writes an AUTORUN.SYS
onto the disk.

The two games are written in Basic. NYPY, I found it rather difficult to master,
you must guide a funny looking guy, through an under ground maze.

SAGUARO, the alm In this game is to plck up as many eggs as you can
which a big bird is laying all over the place. But beware, if this bird catches up
with you, then you've had it.

ADVERTISING USER GROUPS

CO-U -
siasts
As a member of LACE you will
receive a monthly newsletter
and have access to a monthly
meeting. They also support the
ST and keep a large selection
of ST and &bit PD software.

The membership fee is
f 8.00 annually
for more information contact:
Mr. Roger Lacey
LACE Secretary
41 Henryson Road
Crofton Park
London SE4 1 HL
Tel.: 0181 - 690 2548

The 01 'HACKEBS
LxuvwER
v
O.H.A.U.G. is an all 8-bit user
group in the STATE of NEW
YORK.

They are producing a bi-monthly
double sided disk based
newsletter. The disk comes with
its own printing utility, which lets
you read the content of the disk,
one screen page at the time,
andlor you can make a hard
copy of the disk, in one, two or
three columns and 6 to 8 lines
to the inch. A large PD Library is
available.

Contact:
Mr.A.Plgnato
O.H.A.U.G.
3376 Ocean Harbor Drive
Oceanside, N.Y. 1 1572
USA

